What is the number of ways three digit numbers can be formed without any restriction using 0 to 9

Improve Article

Save Article

Like Article

Solution: 

Answer: 125.

Method:

Here, Total number of digits = 5

Let 3-digit number be XYZ.

Now the number of digits available for X = 5,

As repetition is allowed,

So the number of digits available for Y and Z will also be 5 (each).

Thus, The total number of 3-digit numbers that can be formed = 5×5×5 = 125.

(ii) repetition of the digits is not allowed? 

Solution:

Answer: 60.

Method:

Here, Total number of digits = 5

Let 3-digit number be XYZ.

Now the number of digits available for X = 5,

As repetition is not allowed,

So the number of digits available for Y = 4 (As one digit has already been chosen at X),

Similarly, the number of digits available for Z = 3.

Thus, The total number of 3-digit numbers that can be formed = 5×4×3 = 60.

Problem 2: How many 3-digit even numbers can be formed from the digits 1, 2, 3, 4, 5, 6 if the digits can be repeated?

Solution:

Answer: 108.

Method:

Here, Total number of digits = 6

Let 3-digit number be XYZ.

Now, as the number should be even so the digits at unit place must be even, so number of digits available for Z = 3 (As 2,4,6 are even digits here),

As the repetition is allowed,

So the number of digits available for X = 6,

Similarly, the number of digits available for Y = 6.

Thus, The total number of 3-digit even numbers that can be formed = 6×6×3 = 108.

Problem 3: How many 4-letter code can be formed using the first 10 letters of the English alphabet if no letter can be repeated? 

Solution:

Answer: 5040

Method:

Here, Total number of letters = 10

Let the 4-letter code be 1234.

Now, the number of letters available for 1st place = 10,

As repetition is not allowed,

So the number of letters possible at 2nd place = 9 (As one letter has already been chosen at 1st place),

Similarly, the number of letters available for 3rd place = 8,

and the number of letters available for 4th place = 7.

Thus, The total number of 4-letter code that can be formed = 10×9×8×7 = 5040.

Problem 4: How many 5-digit telephone numbers can be constructed using the digits 0 to 9 if each number starts with 67 and no digit appears more than once?

Solution:

Answer: 336

Method:

Here, Total number of digits = 10 (from 0 to 9)

Let 5-digit number be ABCDE.

Now, As the number should start from  67 so the number of possible digits at A and B = 1 (each),

As repetition is not allowed,

So the number of digits available for C = 8 ( As 2 digits have already been chosen at A and B),

Similarly, the number of digits available for D = 7,

and the number of digits available for E = 6.

Thus, The total number of 5-digit telephone numbers that can be formed = 1×1×8×7×6 = 336.

Problem 5: A coin is tossed 3 times and the outcomes are recorded. How many possible outcomes are there?

Solution:

Answer: 8

Method:

We know that, the possible outcome after tossing a coin is either head or tail (2 outcomes),

Here, a coin is tossed 3 times and outcomes are recorded after each toss,

Thus, the total number of outcomes = 2×2×2 = 8.

Problem 6: Given 5 flags of different colours, how many different signals can be generated if each signal requires the use of 2 flags, one below the other?

Solution:

Answer: 20.

Method:

Here, Total number of flags = 5

As each signal requires 2 flag and signals should be different so repetition will not be allowed,

So, the number of flags possible for the upper place = 5,

and the number of flags possible for the lower place = 4.

Thus, the total number of different signals that can be generated = 5×4 = 20.

I think the analogy with the permutations of letters is making this problem more complicated than it needs to be.

Using the restriction that the number has at least one seven, you can first find the numbers that have exactly one $7$, then the numbers that have two $7$s, and then the number that has three $7$s and then add the results.

To find the number of numbers, think of choosing a digit for each spot: _ _ _

For one seven, you can fix a $7$ in a spot, say the first one, so the number looks like 7_ _ and note that for the other spots you can have any of the other 9 digits ($0,1,2,3,4,5,6,8,$ or $9$), so there are $9\cdot 9=81$ such numbers.

For numbers of the forms _ 7 _ and _ _ 7 the count is different because the first digit cannot be $0$, so there are $8\cdot 9=72$ possibilities for each.

Thus, in total there are $72+72+81=225$ three-digit positive integers with one seven as a digit.

Two sevens: For the form _77 there are 8 possibilities because the first spot cannot be 0, and for each of the forms 7_7 and _ _7 there are 9 possibilities, so in total there are $8+9+9=26$ three-digit positive integers with one seven as a digit.

Three sevens: There is only one, $777$.

So in total there are $225+26+1=252$ three-digit integers with a seven as a digit.